On some entropy functionals derived from Rényi information divergence

نویسنده

  • Jean-François Bercher
چکیده

We consider the maximum entropy problems associated with Rényi Q-entropy, subject to two kinds of constraints on expected values. The constraints considered are a constraint on the standard expectation, and a constraint on the generalized expectation as encountered in nonextensive statistics. The optimum maximum entropy probability distributions, which can exhibit a power-law behaviour, are derived and characterized. The Rényi entropy of the optimum distributions can be viewed as a function of the constraint. This defines two families of entropy functionals in the space of possible expected values. General properties of these functionals, including nonnegativity, minimum, convexity, are documented. Their relationships as well as numerical aspects are also discussed. Finally, we work out some specific cases for the reference measure Q(x) and recover in a limit case some well-known entropies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Preferred Definition of Conditional Rényi Entropy

The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...

متن کامل

Rényi information transfer: Partial rényi transfer entropy and partial rényi mutual information

Shannon and Rényi information theory have been applied to coupling estimation in complex systems using time series of their dynamical states. By analysing how information is transferred between constituent parts of a complex system, it is possible to infer the coupling parameters of the system. To this end, we introduce the partial Rényi transfer entropy and we give an alternative derivation of...

متن کامل

On Rényi Divergence Measures for Continuous Alphabet Sources

The idea of ‘probabilistic distances’ (also called divergences), which in some sense assess how ‘close’ two probability distributions are from one another, has been widely employed in probability, statistics, information theory, and related fields. Of particular importance due to their generality and applicability are the Rényi divergence measures. While the closely related concept of Rényi ent...

متن کامل

Rényi divergence and majorization

Rényi divergence is related to Rényi entropy much like information divergence (also called Kullback-Leibler divergence or relative entropy) is related to Shannon’s entropy, and comes up in many settings. It was introduced by Rényi as a measure of information that satisfies almost the same axioms as information divergence. We review the most important properties of Rényi divergence, including it...

متن کامل

Rényi divergence measures for commonly used univariate continuous distributions

Probabilistic ‘distances’ (also called divergences), which in some sense assess how ‘close’ two probability distributions are from one another, have been widely employed in probability, statistics, information theory, and related fields. Of particular importance due to their generality and applicability are the Rényi divergence measures. This paper presents closed-form expressions for the Rényi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 178  شماره 

صفحات  -

تاریخ انتشار 2008